Synthesis of the bisbenzannelated spiroketal core of the γ-rubromycins. The use of a novel Nef-type reaction mediated by Pearlman's catalyst \dagger

Tanya Capecchi, Charles B. de Koning * and Joseph P. Michael
Centre for Molecular Design, Department of Chemistry, University of the Witwatersrand, PO Wits 2050, South Africa
Received (in Cambridge, UK) 13th April 2000, Accepted 18th May 2000
Published on the Web 3rd July 2000

The synthesis of the bisbenzannelated spiroketal core $\mathbf{6}$ of γ-rubromycin $\mathbf{1}$ from the substituted nitrostyrene $\mathbf{2 0}$ was achieved by using a novel Nef-type reaction mediated by Pearlman's catalyst. The precursor $\mathbf{2 8}$ was synthesised from readily prepared starting materials using Henry condensation chemistry. The product $\mathbf{6}$ was found to exist in two conformations in solution as shown by NMR spectroscopy.

Introduction

Since the reported isolation of the spiroketal-containing pigment γ-rubromycin 1 from Streptomyces collinus in 1969, ${ }^{1}$ a number of related compounds have been discovered. These include purpuromycin $\mathbf{2}^{2}$ and heliquinomycin $3,{ }^{3}$ as well as griseorhodins C 4 and G5. ${ }^{4}$ All these compounds contain benzannelated furan and pyran rings that share one carbon atom to form a spiroketal system.

Several of these compounds show interesting biological activities. The rubromycins are active against the reverse transcriptase of human immunodeficiency virus- $1,{ }^{5}$ while purpuromycin is a potential topical agent for vaginal infections. ${ }^{6}$ This has resulted in patents on the use of purpuromycin and related derivatives for vaginal infections. ${ }^{7}$ The most recently discovered member of this class of compounds, heliquinomycin, is an inhibitor of DNA helicase. ${ }^{3}$ It is believed that these compounds can act as bioreductive alkylating agents. ${ }^{8}$

As a result of the interesting biological activities and structures of these microbial metabolites, several synthetic analogues have been made. ${ }^{9}$ However, the total synthesis of these compounds has so far remained elusive. Even more surprisingly, examination of the literature has revealed that there are no reported syntheses of the basic bisbenzannelated dioxa-3Hspiro [benzofuran- $2,2^{\prime}$-chromane] core of these natural products. As part of our ongoing research programme aimed at the synthesis of biologically active quinones, ${ }^{10,11}$ this paper dis-
\dagger Experimental data and full characterization of compounds $\mathbf{8}$ and 12-16 are available as supplementary data. For direct electronic access see http://www.rsc.org/suppdata/p1/b0/b002984j/

1, γ-Rubromycin, $\mathrm{R}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{H}$
2, Purpuromycin, $\mathrm{R}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$
3. Heliquinomycin, $\mathrm{R}=\mathrm{O}$-cymarose, $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{H}$
closes the synthesis of the aromatic spiroketal compound $\mathbf{6}$, which forms the core of γ-rubromycin. Part of this work has already been reported as a communication. ${ }^{12}$

Results and discussion

The obvious disconnection of the target system 6 is to the diphenolic ketone 7 (Scheme 1). Three possible strategies for

Scheme 1
the synthesis of 7 were investigated, all involving the coupling of two arylated moieties with the creation of a carbon-carbon bond to the site destined to become the keto group.

Initially, the use of Corey-Seebach thioacetal "umpolung" methodology ${ }^{13}$ was probed. One approach ${ }^{14}$ used was to attempt the synthesis of $\mathbf{1 0}$ from aromatic thioacetal $\mathbf{8}$ and the aromatic aldehyde 9 (Scheme 2). Both 8 and 9 were easily prepared from readily available starting materials. BaeyerVilliger oxidation of 2,5-dimethoxybenzaldehyde 11 with the magnesium salt of monoperoxyphthalic acid (MMPP) followed by chromatography on silica gel gave the required phenol 12, which was protected as the methoxymethyl (MOM) ether 13.

4, Griseorhodin $\mathrm{C}, \mathrm{R}=\mathrm{OH}$
5. Griseorhodin G R=H

Treatment of $\mathbf{1 3}$ with n-butyllithium followed by allyl bromide at $-78^{\circ} \mathrm{C}$ afforded the desired product 14. It was clear from ${ }^{1} \mathrm{H}$ NMR spectroscopy that the allyl group was situated ortho to both the methoxy and MOM ether as two aromatic protons were visible at $\delta 6.73$ and 6.56 and showed characteristic orthocoupling ($J=8.7 \mathrm{~Hz}$). Ozonolysis of $\mathbf{1 4}$ provided aldehyde $\mathbf{1 5}$. In attempted formation of thioacetal 8 by treatment of $\mathbf{1 5}$ with propane-1,3-dithiol and boron trifluoride-diethyl ether, the MOM protecting group was lost, but this was easily reintroduced under standard conditions to give $\mathbf{8}$ in 63% overall yield from 15 (Scheme 3).
The other compound $\mathbf{9}$ required for the synthesis of $\mathbf{1 0}$ was readily prepared from guaiacol. Treatment of guaiacol with allyl bromide and potassium carbonate gave ether $\mathbf{1 6}$ in 99% yield. Careful heating of 16 at $180^{\circ} \mathrm{C}$ in the absence of solvent effected Claisen rearrangement (Scheme 3). The required phenolic product was treated immediately with methoxymethyl chloride and diisopropylethylamine to give 17. Reaction of 17 with ozone afforded the desired aldehyde 9 . However, all attempts to achieve the critical carbon-carbon formation between $\mathbf{8}$ and 9 to afford $\mathbf{1 0}$ proved to be fruitless. The use of alternative "umpolung" methodology using trimethylsilyl derivatives of a cyanohydrin ${ }^{15}$ was also unsuccessful in our hands.

Fortunately, the approach that ultimately succeeded proceeded through the nitrostyrene 20, which was prepared from the substituted benzaldehyde 18 and 3-arylnitropropane $\mathbf{1 9}$ (see Scheme 6). In this approach our first task was to synthesise the aromatic aldehyde 18. Treatment of the previously prepared MOM-protected phenol $\mathbf{1 3}$ with n-butyllithium at $-78^{\circ} \mathrm{C}$ followed by paraformaldehyde gave the alcohol 22 in good yield $(87 \%) .{ }^{16}$ This was oxidised with pyridinium chlorochromate (PCC) supported on Celite to give aldehyde 24. It was clear from the ${ }^{1} \mathrm{H}$ NMR spectrum that the aldehyde had been formed, as a singlet was evident at $\delta 10.49$. As the more robust benzyl-protected compound $\mathbf{1 8}$ was required for future steps, the MOM protecting group of $\mathbf{2 4}$ was removed with toluene- p sulfonic acid, and the resulting phenol was protected to give the benzyl ether $\mathbf{1 8}$ as shown in Scheme 4. Attempts at direct reaction of the benzyl-protected compound 21 with n-butyllithium at $-78^{\circ} \mathrm{C}$ followed by addition of paraformaldehyde did not give 23, but gave back mainly starting material as well as a mixture of two uncharacterized products.
The second precursor was made from the previously prepared ether 16. As before, careful heating of $\mathbf{1 6}$ at $180^{\circ} \mathrm{C}$ in the absence of solvent effected Claisen rearrangement, but this time the phenolic product was treated immediately with benzyl bromide and potassium carbonate to give 25 (Scheme 5). Ozonolysis of $\mathbf{2 5}$ gave aldehyde $\mathbf{2 6}$ in 84% yield. Evidence for the conversion came from the singlet at $\delta 9.51$ in the ${ }^{1} \mathrm{H}$ NMR

Scheme 3 Reagents and conditions: (i) (a) MMPP, MeOH; (b) silica, 94%; (ii) MOMCl, $\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 88 \%$; (iii) (a) n - BuLi , THF, TMEDA, $-78^{\circ} \mathrm{C}$; (b) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}, 97 \%$; (iv) (a) $\mathrm{O}_{3}, \mathrm{MeOH}$, $-40{ }^{\circ} \mathrm{C}$; (b) $\mathrm{Me}_{2} \mathrm{~S}, 89 \%$; (v) (a) $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}, p$-TsOH, PhH ; (b) MOMCl, $\operatorname{Pr}_{2}^{\mathrm{i}} \mathrm{NH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 63 \%$; (vi) $180^{\circ} \mathrm{C}, 91 \%$; (vii) MOMCl, $\mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{NH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 97 \%$; (viii) (a) $\mathrm{O}_{3}, \mathrm{MeOH},-40^{\circ} \mathrm{C}$; (b) Zn , $\mathrm{AcOH}, 90 \%$.

Scheme 4 Reagents and conditions: (i) $\mathrm{MOMCl}, \mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{NH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 88% (for $\mathbf{1 2} \boldsymbol{\rightarrow 1 3}$); (ii) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Me}_{2} \mathrm{CO}, 82 \%$ (for $\mathbf{1 2 \rightarrow \mathbf { 2 1 } \text {); (iii) (a) }}$ n-BuLi, THF, TMEDA, $-78^{\circ} \mathrm{C}$; (b) $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{n}, 87 \%$; (iv) PCC, Celite, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 86 \%$; (v) p - TsOH , dioxane- $\mathrm{H}_{2} \mathrm{O}, 55^{\circ} \mathrm{C}, 96 \%$; (vi) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $70{ }^{\circ} \mathrm{C}, 97 \%$.
spectrum. Henry condensation of $\mathbf{2 6}$ with nitromethane and sodium hydroxide in the presence of cetyltrimethylammonium bromide ${ }^{17}$ yielded alcohol 27 . Dehydration of 27 by treatment with methanesulfonyl chloride and diisopropylethylamine ${ }^{18}$ afforded alkene 28. The ${ }^{1} \mathrm{H}$ NMR spectrum showed, inter alia, one doublet of doublets at $\delta 3.43$ ($J=6.9$ and 1.6 Hz); the other proton on the double bond was obscured by the aromatic

Scheme 5 Reagents and conditions: (i) (a) $\mathrm{O}_{3},-40^{\circ} \mathrm{C}$; (b) $\mathrm{Zn}, \mathrm{AcOH}$, 84%; (ii) MeNO_{2}, cetyltrimethylammonium bromide (CTABr), 0.025 M $\mathrm{NaOH}, 100 \%$; (iii) $\mathrm{MsCl}, \mathrm{Pr}_{2}{ }_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 96 \%$; (iv) $\mathrm{NaBH}_{4}, \mathrm{MeOH}-$ THF, 70\%.
protons. Finally, the double bond of $\mathbf{2 8}$ was reduced with sodium borohydride ${ }^{19}$ to give the desired precursor 19.

Concurrently with our work an improved protocol for the Henry condensation using microwave irradiation was published in the literature. ${ }^{20}$ Gratifyingly, microwave-promoted Henry condensation between 18 and 19 using ammonium acetate in acetic acid as shown in Scheme 6 gave the desired nitroalkene 20

Scheme 6 Reagents and conditions: (i) $\mathrm{NH}_{4} \mathrm{OAc}, \mathrm{AcOH}, 57 \%$; (ii) $\mathrm{TiCl}_{3}, \mathrm{NH}_{4} \mathrm{OAc}, \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}, 29 \%$ (for 29); (iii) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}, 30 \%$ (for 30) and 10% (for 7); (iv) $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{EtOH}$, conc. HCl , cyclohexene, 64% (for 6) and 18% (for 7).
in fair yield (57%) as a mixture of (Z) - and (E)-isomers. ${ }^{21}$ The ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy differed from experiment to experiment, but this was not an important factor in view of the subsequent fate of the product.

The next step in the synthesis was to convert the unsaturated nitro compound 20 into ketone $\mathbf{7}$ using the Nef reaction. ${ }^{22}$ To our surprise, the use of Nef chemistry for the formation of aromatic spiroketals has not been previously reported. ${ }^{23}$ However, the related formation of simple spiroketal systems such as 31 from intermediate 32 has been documented (Scheme 7). ${ }^{24}$ Also in the literature ${ }^{25}$ are examples of the conversion of

Scheme 7
nitroalkenes into carbonyls, without prior reduction to nitroalkanes, and hence we decided to subject compound $\mathbf{2 0}$ to some of the conditions reported in the literature.
Exposure of $\mathbf{2 0}$ to titanium trichloride in a mixture of methanol and aqueous ammonium acetate ${ }^{26}$ gave the desired product 29, albeit in low yield (29%). At this stage it was decided to change tactics slightly and remove the benzyl protecting group of $\mathbf{2 0}$ before attempting the Nef reaction, as it was believed that the phenolic intermediates formed would be more compatible with the aqueous reaction conditions frequently required for the Nef reaction. It was also suspected that the double bond of the unsaturated nitro functionality would probably be reduced, giving the saturated nitro compound $\mathbf{3 0}$. Catalytic hydrogenation of $\mathbf{2 0}$ with activated palladium on carbon (20%) in methanol gave an inseparable mixture of the desired compound $\mathbf{3 0}$ as well as a compound that was not completely characterised. Based on NMR spectroscopic evidence in particular, indications were that not only had the benzyl protecting groups been removed, but that the unsaturated nitro group had been converted into a carbonyl group. The most significant diagnostic feature for this was the appearance of a signal at $\delta 209.3$ in the ${ }^{13} \mathrm{C}$ NMR spectrum. Hence it was believed that during the reaction the diphenolic ketone 7 was also being produced.
As a result of this, a series of experiments was conducted to establish reaction conditions that would effect not only the removal of both the benzyl protecting groups, but also the conversion of the unsaturated nitro group of $\mathbf{2 0}$ in one step to yield 7 as the sole product. It was also hoped that this product would then spontaneously lose water to give the desired spiroketal 6 . Satisfyingly, exposure of $\mathbf{2 0}$ to Pearlman's catalyst [20% $\mathrm{Pd}(\mathrm{OH})_{2}$ on carbon] in 96% ethanol together with one drop of concentrated hydrochloric acid and cyclohexene under an atmosphere of hydrogen ${ }^{27}$ afforded the spiroketal 6 directly in 64% yield, together with the carbonyl compound 7 (18% yield) (Scheme 6). On standing 7 slowly converted into 6 .

Two possible mechanisms were envisaged for the conversion of $\mathbf{2 0}$ into $\mathbf{6}$. The first entails the reduction of the nitro group of 20 to afford enamine 33 , which under aqueous acidic conditions would hydrolyze to the carbonyl compound 7 , and then cyclize to the spiroketal 6. Alternatively, the nitro group could be reduced to an unsaturated hydroxylamine, tautomerisation would yield the oxime 34, which could be hydrolyzed to 7 .

Literature precedent ${ }^{28}$ shows that reduction of unsaturated nitro groups by palladium on carbon can produce oximes; recent results from our laboratories ${ }^{29}$ indicate that oxime intermediates such as $\mathbf{3 4}$ are indeed involved in this reaction.

Therefore the mechanism outlined in the preceding communication ${ }^{12}$ depicting 33 as an intermediate is probably incorrect.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy indicates that $\mathbf{6}$ adopts two conformations in solution. The evidence for this was that six methoxy signals were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum at ambient temperature. Upon heating the product in toluene- d_{8} up to 363 K , coalescence of most of the duplicated signals, including the methoxy singlets was observed. As our spirocyclization was an acid-promoted reaction, with no emphasis on stereocontrol, presumably the thermodynamically favoured isomer should be formed. The preferred conformation around the spiro centre is for both oxygens to benefit from anomeric effects by adopting pseudoaxial positions relative to each other. ${ }^{30}$ Therefore we were surprised to find two conformations of the spiroketal in solution. Although one might intuitively expect an equilibrium between axial-axial and axial-equatorial conformations to be responsible for the spectroscopic observations, preliminary results from molecular modelling using HyperChem 5.0 indicate that the pyran ring of the bisbenzannelated spiroketal core seems to be adopting two different conformations while maintaining the mutual axial relationship of oxygen at the anomeric centre. ${ }^{31}$

In conclusion, this work represents the first synthesis of the bisbenzannelated 1,6-dioxaspiro[4.5]decane system. To our knowledge, this is also the first example of Pearlman's catalyst effecting a Nef-type reaction on a conjugated nitroalkene. However this example does not lead to the free carbonyl 7 but leads directly to the spiroketal $\mathbf{6}$ since free phenolic groups are also liberated in the presence of Pearlman's catalyst. Work in progress includes the synthesis of other spiroketal systems using this new methodology.

Experimental

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on either a Bruker AC-200 or a Bruker DRX 400 spectrometer at the frequency indicated. DEPT, CH-correlated and HMBC spectra were run on some samples to enable complete assignments of all the signals. NMR spectral assignments with the same superscript may be interchanged. J-Values are given in Hz . Infra-red spectra were recorded either on a Bruker IFS 25 Fourier Transform spectrometer, or on a Bruker Vector 22 Fourier Transform spectrometer. Mass spectra were recorded on a Kratos MS 9/50, VG 70E MS or a VG 70 SEQ mass spectrometer. Elemental analysis was performed on a Perkin-Elmer 2400 CHN Elemental Analyser. Macherey-Nagel Kieselgel 60 (particle size $0.063-0.200 \mathrm{~mm}$) was used for conventional silica gel chromatography and Macherey-Nagel Kieselgel 60 (particle size $0.040-0.063 \mathrm{~mm}$) was used for preparative flash chromatography. All solvents used for reactions and chromatography were distilled prior to use.

1-Methoxy-2-methoxymethoxy-3-(prop-2-enyl)benzene 17

Compound $\mathbf{1 6}(5.779 \mathrm{~g}, 35.19 \mathrm{mmol})$ was heated neat at $180^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The reaction mixture changed from a clear oil to a dark brown oil. On completion of the reaction as monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, the reaction mixture was allowed to cool, and the thick brown oil subjected to column chromatography (5% ethyl acetate-hexane) yielding the intermediate, 2-methoxy-6-(prop-2-enyl)phenol, as a clear oil ($5.260 \mathrm{~g}, 91 \%$). $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3524(\mathrm{~s}, \mathrm{OH}), 2974\left(\mathrm{w},=\mathrm{CH}_{2}\right)$, 2836 (w, Ar-H), 1592 (w, ArC=C), 1270 (s, C-O) and 738 (s, oop $\mathrm{ArC}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 6.79-6.70(3 \mathrm{H}, \mathrm{m}$, Ar-H), $5.99-5.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.75(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, 5.13-5.01 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and 3.42 $\left(2 \mathrm{H}, \mathrm{dt}, J 6.5\right.$ and $\left.1.5, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $146.3\left(\mathrm{C}-1^{1}\right), 143.3\left(\mathrm{C}-2^{\mathrm{a}}\right), 136.6\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 125.8(\mathrm{C}-6)$, 122.2, 119.3 and $115.3(3 \times \mathrm{Ar}-\mathrm{C}), 108.6\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 55.9$ $\left(\mathrm{OCH}_{3}\right)$ and $33.8\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$.

2-Methoxy-6-(prop-2-enyl)phenol ($10.394 \mathrm{~g}, 63.30 \mathrm{mmol}$) was dissolved in dry dichloromethane ($150 \mathrm{~cm}^{3}$) and cooled to $0^{\circ} \mathrm{C}$ under nitrogen. Diisopropylethylamine ($27.57 \mathrm{~cm}^{3}, 20.45$ $\mathrm{g}, 0.16 \mathrm{~mol}$) was added, followed by methoxymethyl chloride ($7.21 \mathrm{~cm}^{3}, 7.64 \mathrm{~g}, 95 \mathrm{mmol}$). The cooling bath was removed after 30 min , and the reaction allowed to stir for a further 2 h at room temperature. The reaction was monitored by tlc, using Pauly's salt as a spray reagent to detect the phenol, as the phenol and methoxymethyl ether have the same R_{f}. On completion, the dichloromethane was removed in vacuo, and the residue taken up in diethyl ether, and washed sequentially with 100 cm^{3} each of aqueous $10 \% \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, aqueous $10 \% \mathrm{NaOH}$ and aqueous saturated NaCl . The organic layer was then dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The residue was purified by column chromatography (5% ethyl acetate-hexane) to afford the substituted benzene $\mathbf{1 7}$ as a clear oil (12.822 g , 97\%) (Found: M^{+}, 208.1092. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ requires M, 208.1099); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2938\left(\mathrm{w},=\mathrm{CH}_{2}\right), 2838(\mathrm{w}, \mathrm{Ar}-\mathrm{H}), 1584(\mathrm{~m}$, $\mathrm{ArC=C}), 1270(\mathrm{~s}, \mathrm{C}-\mathrm{O})$ and $750(\mathrm{~m}$, oop $\mathrm{ArC}-\mathrm{H}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.03-6.95(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 6.79-6.75(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-6), \quad 6.05-5.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), \quad 5.11-5.01$ $\left(2 \mathrm{H}+2 \mathrm{H}, \mathrm{m}+\mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $3.47(2 \mathrm{H}, \mathrm{dt}, J 6.6$ and 1.4 , $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 152.05\left(\mathrm{C}-2^{2}\right), 143.88$ $\left(\mathrm{C}-1^{\mathrm{a}}\right), 136.95\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 134.01(\mathrm{C}-3), 123.97,121.81$ and $115.44(3 \times \mathrm{Ar}-\mathrm{C}), 110.17\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 98.72\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $57.18\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 55.46\left(\mathrm{OCH}_{3}\right)$ and $34.02\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$; m / z (EI) $208\left(\mathrm{M}^{+}, 33 \%\right), 163$ (31), 131 (10) and 45 (100).

(3-Methoxy-2-methoxymethoxyphenyl)acetaldehyde 9

1-Methoxy-2-methoxymethoxy-3-(prop-2-enyl)benzene $\mathbf{1 7}$ $(1.506 \mathrm{~g}, 7.221 \mathrm{mmol})$ was dissolved in methanol $\left(90 \mathrm{~cm}^{3}\right)$ and cooled to $-40^{\circ} \mathrm{C}$. Ozone was bubbled through the solution until an indicator solution of aqueous potassium iodide turned yellow ($\sim 10 \mathrm{~min}$). Zinc dust $(0.94 \mathrm{~g}, 14.4 \mathrm{mmol})$ and acetic acid $\left(1.65 \mathrm{~cm}^{3}, 1.73 \mathrm{~g}, 28.8 \mathrm{mmol}\right)$ were added and the cooling bath removed. The reaction mixture was stirred at room temperature for 1 h , after which the excess zinc was removed by filtration. The solvent was removed in vacuo, leaving a solid yellow residue. This was taken up in $\mathrm{H}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$ and washed with diethyl ether $\left(3 \times 75 \mathrm{~cm}^{3}\right)$. The ethereal extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The yellow oil was purified by silica gel column chromatography ($10-15 \%$ ethyl acetate-hexane) to afford the desired acetaldehyde $9(1.161 \mathrm{~g}, 90 \%$ based on starting material converted, 85% conversion) as a pale yellow oil, and starting material (0.225 g) (Found: $\mathrm{M}^{+}, 210.0891 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$ requires M, 210.0892); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2838\left(\mathrm{~m}, \mathrm{OCH}_{3}\right), 2727(\mathrm{w}, \mathrm{C}-\mathrm{H}$ of CHO), 1721 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1586 ($\mathrm{s}, \mathrm{ArC=C}$), 1268 and 1223 (m, C-O) and $752(\mathrm{~m}$, oop $\mathrm{ArC}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 9.71$ ($1 \mathrm{H}, \mathrm{t}, J 2.2, \mathrm{H}-1$), $7.07-7.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 6.88(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $\left.1.5, \mathrm{H}-4^{\prime}\right), 6.77\left(1 \mathrm{H}, \mathrm{dd}, J 7.7\right.$ and $\left.1.5, \mathrm{H}-6^{\prime}\right), 5.09(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.73(2 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{H}-2)$ and $3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 199.8$ (C-1), 152.2 (C-2'a), 144.8 (C-3'a), 126.8 (C-1'), 124.5, 122.8 and $111.7(3 \times \mathrm{Ar}-\mathrm{C}), 98.9\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 57.3\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $55.6\left(\mathrm{OCH}_{3}\right)$ and $45.2(\mathrm{C}-2) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 210\left(\mathrm{M}^{+}, 35 \%\right), 180(29)$, 178 (45), 150 (29), 136 (34), 135 (12) and 45 (100).

(3,6-Dimethoxy-2-methoxymethoxyphenyl)methanol 22

Ether $\mathbf{1 3}(4.229 \mathrm{~g}, 21.34 \mathrm{mmol})$ was dissolved in dry tetrahydrofuran ($200 \mathrm{~cm}^{3}$) and cooled to $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. TMEDA ($6.44 \mathrm{~cm}^{3}, 4.96 \mathrm{~g}, 42.7 \mathrm{mmol}$) was added, followed by the dropwise addition of n-butyllithium $\left(28.45 \mathrm{~cm}^{3}\right.$ of a 1.50 M solution in hexane, 42.7 mmol). This caused the colourless solution to turn yellow. After 90 min , paraformaldehyde ($1.278 \mathrm{~g}, 42.6 \mathrm{mmol}$, pre-dried in a drying oven under high vacuum at $70^{\circ} \mathrm{C}$ for 2 h) was added, causing the reaction mixture to go pale yellow, and cloudy. The reaction was allowed to warm to room temperature 1 h after the addition of para-
formaldehyde, and left stirring for 18 h . Water $\left(100 \mathrm{~cm}^{3}\right)$ was added, and the mixture extracted with diethyl ether (3×100 $\left.\mathrm{cm}^{3}\right)$, and the ethereal extracts dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed in vacuo. The residue was purified on a silica column ($15-30 \%$ ethyl acetate-hexane) to afford the alcohol $\mathbf{2 2}$ as a pale oil $(3.581 \mathrm{~g}, 87 \%$ based on starting material converted, 84% conversion), as well as recovered starting material $13(0.671 \mathrm{~g}$, 3.387 mmol). (Found: $\mathrm{M}^{+}, 228.0992 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{5}$ requires M, 228.0998); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3476$ (s, OH), 2996 ($\mathrm{s}, \mathrm{Ar}-\mathrm{H}$), 1594 (s , $\mathrm{ArC=C}$), 1260 ($\mathrm{s}, \mathrm{C}-\mathrm{O}$) and 798 (s, oop $\mathrm{ArC}-\mathrm{H}$); $\delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 6.81\left(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{H}-5^{\prime}\right), 6.61(1 \mathrm{H}, \mathrm{d}, J 9.0$, $\left.\mathrm{H}-4{ }^{\prime}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.80$ and 3.79 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$ and 3.05 $\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right) ; \delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 152.1\left(\mathrm{C}-2^{\prime 2}\right), 146.3$ $\left(\mathrm{C}-3^{\prime 2}\right), 145.4\left(\mathrm{C}-6^{\mathrm{a}}\right), 124.2\left(\mathrm{C}-1^{\prime}\right), 111.9$ and $106.2(2 \times \mathrm{Ar}-\mathrm{C})$, $99.2\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 57.4\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 56.2$ and 55.9 (each $\left.\mathrm{OCH}_{3}\right)$ and $54.6\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 228\left(\mathrm{M}^{+}, 10 \%\right), 167(19)$, 166 (100), 165 (15), 137 (27), 136 (19), 123 (35) and 45 (84).

3,6-Dimethoxy-2-(methoxymethoxy)benzaldehyde 24

Pyridinium chlorochromate (4.06 g 18.8 mmol) and Celite (4.0 $\mathrm{g})$ were suspended in dry dichloromethane $\left(150 \mathrm{~cm}^{3}\right)$. A solution of $22(2.543 \mathrm{~g}, 11.14 \mathrm{mmol})$ in dry dichloromethane (150 cm^{3}) was added, changing the reaction mixture from a bright orange suspension to a dark brown suspension. The reaction was stirred at room temperature under an inert nitrogen atmosphere for 19 h . The reaction mixture was poured onto a silica plug $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, then 30% ethyl acetate-hexane) to afford the benzaldehyde $24(2.162 \mathrm{~g}, 86 \%)$ as an orange oil (Found: M^{+}, 226.0838. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}$ requires $M, 226.0841$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2951$ (m, Ar-H), 1690 (s, C=O), 1579 (s, ArC=C), 1273 ($\mathrm{s}, \mathrm{C}-\mathrm{O}$) and 747 (m, oop ArC-H); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 10.49(1 \mathrm{H}, \mathrm{s}$, CHO), 7.10 ($1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{H}-4$), 6.68 ($1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{H}-5$), 5.19 $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.86$ and 3.83 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$) and 3.56 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 189.8(\mathrm{CHO})$, $155.0\left(\mathrm{C}-2^{\mathrm{a}}\right), 148.6\left(\mathrm{C}-3^{\mathrm{a}}\right), 146.4\left(\mathrm{C}-6^{\mathrm{a}}\right), 112.0(\mathrm{C}-1), 119.0$ and $106.7(2 \times \mathrm{Ar}-\mathrm{C})$, $99.8\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 57.7\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$ and 56.7 and 56.1 (each OCH_{3}); $m / z(\mathrm{EI}) 226\left(\mathrm{M}^{+}, 41 \%\right)$, 195 (17), 181 (25), 180 (77), 166 (52), 151 (15), 137 (15), 124 (20), 107 (9) and 45 (100).

2-Benzyloxy-3,6-dimethoxybenzaldehyde 18

Benzaldehyde 24 ($0.746 \mathrm{~g}, 3.30 \mathrm{mmol}$) was dissolved in a mixture of 1,4-dioxane ($18 \mathrm{~cm}^{3}$) and water ($6 \mathrm{~cm}^{3}$). Toluene-psulfonic acid $(0.070 \mathrm{~g}, 0.37 \mathrm{mmol})$ was added, and the reaction mixture heated at $55^{\circ} \mathrm{C}$ for 20 h . Water ($30 \mathrm{~cm}^{3}$) was added, and the mixture extracted with diethyl ether $\left(3 \times 30 \mathrm{~cm}^{3}\right)$, the organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed in vacuo. The orange-brown solid was purified by chromatography on silica (20% ethyl acetate-hexane) to afford the intermediate, 3,6-dimethoxy-2-hydroxybenzaldehyde ($0.575 \mathrm{~g}, 96 \%$), as bright yellow needles $\mathrm{mp} 67-67.5^{\circ} \mathrm{C}$ (from ethyl acetatehexane) (Found: M^{+}, 182.0588; C, 59.20. H, 5.45\%. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires C, $59.30 ; \mathrm{H}, 5.50 ; M, 182.0579) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3019 (s, OH), 2839 (w, Ar-H), 1647 (s, C=O), 1591 ($\mathrm{ArC=C}$), 1227 and 1197 (s, C-O) and $723(\mathrm{~m}$, oop $\mathrm{ArC}-\mathrm{H})$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 12.18(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 10.29(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.02$ $(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{H}-4), 6.26(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{H}-5)$ and 3.84 and 3.83 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$); $\delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 194.7(\mathrm{CHO})$, 155.6 (C-3 $\left.{ }^{\mathrm{a}}\right), 153.3\left(\mathrm{C}-\mathrm{b}^{\mathrm{a}}\right), 141.8\left(\mathrm{C}-2^{\mathrm{a}}\right), 120.1$ (Ar-C), 110.8 (C-1), 99.2 (Ar-C), 56.6 and 55.5 (each OCH_{3}); m/z (EI) 182 ($\mathrm{M}^{+}, 100 \%$), 167 (24), 163 (19), 139 (54), 136 (6), 121 (7), 107 (27), 93 (2), 79 (13), 69 (8), 55 (5), 51 (10) and 39 (8).

The intermediate 3,6-dimethoxy-2-hydroxybenzaldehyde ($1.421 \mathrm{~g}, 7.80 \mathrm{mmol}$) was dissolved in dry DMF $\left(25 \mathrm{~cm}^{3}\right)$. Benzyl bromide ($1.39 \mathrm{~cm}^{3}, 2.00 \mathrm{~g}, 11.7 \mathrm{mmol}$) and potassium carbonate ($1.82 \mathrm{~g}, 13.2 \mathrm{mmol}$) were added, and the reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 18 h under an inert nitrogen atmosphere. Water $\left(50 \mathrm{~cm}^{3}\right)$ was then added and the mixture
extracted with diethyl ether $\left(6 \times 50 \mathrm{~cm}^{3}\right)$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The brown oil was purified by chromatography on silica (hexane, 20% ethyl acetate-hexane) yielding the product 18 (2.060 g , 97%) as an orange oil (Found: $\mathrm{M}^{+}, 272.1056 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $M, 272.1049) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2940(\mathrm{~m}, \mathrm{Ar}-\mathrm{H}), 1696$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1582 (s, ArC=C), 1267 (s, C-O) and 751 (m, oop ArC-H); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 10.37(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.47-7.29$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$), 7.10 ($1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{H}-4$), 6.63 ($1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{H}-5$), $5.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and 3.84 and 3.82 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$; $\delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 189.8(\mathrm{CHO}), 154.5\left(\mathrm{C}-3^{\mathrm{a}}\right), 150.7$ $\left(\mathrm{C}-6^{\mathrm{a}}\right), 146.7\left(\mathrm{C}-2^{\mathrm{a}}\right), 136.5(\mathrm{C}-1), 128.5,128.3,128.2$ and 127.8 $(4 \times \mathrm{Ar}-\mathrm{C}), 119.1\left(\mathrm{C}-5^{\mathrm{b}}\right), 106.5\left(\mathrm{C}-4^{\mathrm{b}}\right), 76.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ and 56.6 and 56.1 (each OCH_{3}); m / z (EI) $272\left(\mathrm{M}^{+}, 12 \%\right), 244$ (8), 180 (14), 167 (3), 149 (10), 137 (3), 122 (2), 107 (4), 92 (8), 91 (100), 79 (3), 65 (10), 51 (4) and 39 (5).

2-Benzyloxy-1,4-dimethoxybenzene 21

Phenol 12 ($0.554 \mathrm{~g}, 3.59 \mathrm{mmol}$) was dissolved in acetone $\left(25 \mathrm{~cm}^{3}\right)$. Benzyl bromide $\left(0.674 \mathrm{~cm}^{3}, 0.969 \mathrm{~g}, 5.67 \mathrm{mmol}\right)$ was added, followed by potassium carbonate ($0.90 \mathrm{~g}, 6.51 \mathrm{mmol}$), causing the reaction mixture to change from colourless to pinkyellow. The reaction was heated under reflux under an inert atmosphere of nitrogen for 18 h . The reaction was cooled, and the potassium carbonate removed by filtration. The solvent was removed in vacuo and the residue subjected to column chromatography (hexane, 10% ethyl acetate-hexane) to afford the product $21(0.716 \mathrm{~g}, 82 \%)$ as a clear oil which formed a waxy solid (mp 37-37.5 ${ }^{\circ} \mathrm{C}$) on standing (Found: M^{+}, 244.1105. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $M, 244.1099$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3023$ (m, $\mathrm{Ar}-\mathrm{H}$), 1612 and 1610 (s, $\mathrm{ArC}=\mathrm{C}$), 1205 (s, C-O) and 723 (m, oop ArC-H); δ_{H} ($200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) 7.43-7.27 ($5 \mathrm{H}, \mathrm{m}$, Ph-H), 6.79 ($1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-6$), 6.53 ($1 \mathrm{H}, \mathrm{d}, J 2.8, \mathrm{H}-3$), 6.39 $(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $2.8, \mathrm{H}-5), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.81$ and 3.68 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$); $\delta_{\mathrm{C}}\left(100.625 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.1$ $\left(\mathrm{C}-2^{\mathrm{a}}\right), 149.0\left(\mathrm{C}-1^{\mathrm{a}}\right), 144.0\left(\mathrm{C}-3^{\mathrm{a}}\right), 136.9,128.4,127.7,127.2$, $112.8,103.9$ and $102.6(7 \times \mathrm{Ar}-\mathrm{C}), 70.9\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$ and 55.7 and 55.5 (each OCH_{3}); m/z (EI) $244\left(\mathrm{M}^{+}, 31 \%\right), 153$ (11), 125 (17), 91 (100) and 65 (11).

Attempted synthesis of (2-benzyloxy-3,6-dimethoxyphenyl)methanol 23

2-Benzyloxy-1,4-dimethoxybenzene $21(0.637 \mathrm{~g}, 2.61 \mathrm{mmol})$ was dissolved in dry tetrahydrofuran ($50 \mathrm{~cm}^{3}$) and cooled to $-25^{\circ} \mathrm{C}$. TMEDA ($0.787 \mathrm{~cm}^{3}, 0.606 \mathrm{~g}, 5.21 \mathrm{mmol}$) was added, followed by n-butyllithium $\left(1.74 \mathrm{~cm}^{3}\right.$ of a 1.50 M solution in hexane, 2.61 mmol), causing the colourless reaction mixture to turn yellow, then orange, and then black. After 1 h , paraformaldehyde ($0.162 \mathrm{~g}, 5.41 \mathrm{mmol}$) was added. The black colour faded slowly, until the solution was clear, and a white precipitate had formed. The reaction was allowed to warm to room temperature and stirred overnight. Water $\left(50 \mathrm{~cm}^{3}\right)$ was added, and the mixture extracted with diethyl ether (3×50 $\left.\mathrm{cm}^{3}\right)$. The ether extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The residue was purified by column chromatography (hexane, 10% ethyl acetate-hexane) to afford the starting material 21 ($0.243 \mathrm{~g}, 38 \%$ recovery), as well as two uncharacterizable products.

2-Benzyloxy-1-methoxy-3-(prop-2-enyl)benzene $\mathbf{2 5}^{32}$

2-Methoxy-6-(prop-2-enyl)phenol ($11.56 \mathrm{~g}, 70.42 \mathrm{mmol}$), prepared as described for the synthesis of 17, was dissolved in distilled acetone ($250 \mathrm{~cm}^{3}$). Benzyl bromide ($20.94 \mathrm{~cm}^{3}, 30.11 \mathrm{~g}$, $0.18 \mathrm{~mol})$ and potassium carbonate ($24.81 \mathrm{~g}, 0.18 \mathrm{~mol}$) were added with acetone $\left(250 \mathrm{~cm}^{3}\right)$. The reaction mixture was heated under reflux under a nitrogen atmosphere for 16 h , after which tlc analysis with Pauly's salt as a spray reagent showed completion of reaction. The reaction mixture was cooled, and the
inorganic solids removed by filtration, and the solvent removed in vacuo. The pale yellow oil was purified by column chromatography (hexane, 5% ethyl acetate-hexane) to yield the product $\mathbf{2 5}(15.08 \mathrm{~g}, 86 \%)$ as a pale yellow oil (Found: M ${ }^{+} 254.1308$. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $M, 254.1306$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2936$ (w, $=\mathrm{CH}_{2}$), 2836 (w, Ar-H), 1584 (m, ArC=C), 1271 (s, C-O) and $750(\mathrm{~m}$, oop $\mathrm{ArC}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.49-7.31$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.04-6.74(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.97-5.84(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}-2^{\prime}\right), 5.05-4.96\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{H}-3^{\prime}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $3.36\left(2 \mathrm{H}, \mathrm{dt}, J 6.6\right.$ and $\left.1.4, \mathrm{H}-1^{\prime}\right) ; \delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 152.8 (C-2 ${ }^{\text {a }}$), 145.7 (C-1 ${ }^{\text {a }}$), 137.9 (Ar-C), 137.2 (C-3'), 134.2 (C-3), 128.2, 128.0 and $127.7(3 \times \mathrm{Ar}-\mathrm{C}), 123.9,121.9$ and 115.5 (C-4, C-5 and C-6), $110.4\left(\mathrm{C}-2^{\prime}\right), 74.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 55.6\left(\mathrm{OCH}_{3}\right)$ and 34.1 (C-1'); m / z (EI) 254 (${ }^{+}$, 22\%), 163 (15), 137 (7), 103 (5), 92 (10), 91 (100) and 65 (8).

2-(2-Benzyloxy-3-methoxyphenyl)acetaldehyde 26

The substituted benzene $\mathbf{2 5}$ ($2.099 \mathrm{~g}, 8.254 \mathrm{mmol}$) was dissolved in methanol $\left(100 \mathrm{~cm}^{3}\right)$ and the solution was cooled to $-40^{\circ} \mathrm{C}$. Ozone was bubbled through the solution for 8 min , after which zinc dust $(1.08 \mathrm{~g}, 16.5 \mathrm{mmol})$ and acetic acid $\left(1.89 \mathrm{~cm}^{3}\right.$, $1.98 \mathrm{~g}, 33.0 \mathrm{mmol}$) were added, and the cooling bath removed. The reaction mixture was stirred at room temperature for 1 h . Excess zinc was removed by filtration, and the solvent removed in vacuo. The solid yellow residue was taken up in $\mathrm{H}_{2} \mathrm{O}$ (100 cm^{3}) and extracted with diethyl ether ($3 \times 50 \mathrm{~cm}^{3}$). The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The yellow oil was subjected to column chromatography (10% ethyl acetate-hexane) to afford the arylacetaldehyde $\mathbf{2 6}(1.787 \mathrm{~g}$, 84%) as a clear oil (Found: $\mathrm{M}^{+}, 256.1090 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$ requires M, 256.1098); $v_{\max }$ (film)/cm ${ }^{-1} 3031$ (w, Ar-H), 2837 (m, C-H of CHO), 1724 (s, C=O), 1586 and 1585 (m, ArC=C), 1269 and 1212 (s, C-O) and 754 (s, oop ArC-H); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 9.51$ ($1 \mathrm{H}, \mathrm{t}, J 2.1, \mathrm{CHO}$), 7.41-7.27 (5H, m, Ph-H), 7.02 (1 H, dd, $J 8.2$ and $7.8, \mathrm{H}-5^{\prime}$), 6.87 (1 H , dd, $J 8.2$ and $1.6, \mathrm{H}-4^{\prime}$), $6.70\left(1 \mathrm{H}, \mathrm{dd}, J 7.8\right.$ and $\left.1.6, \mathrm{H}-6^{\prime}\right), 5.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.85$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $3.53\left(2 \mathrm{H}, \mathrm{d}, J 2.1, \mathrm{CH}_{2} \mathrm{CHO}\right) ; \delta_{\mathrm{C}}(50.32$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 199.4 (CHO), 152.7 (C-2 $2^{\text {'a }}$), 145.9 ($\left.\mathrm{C}-3^{\prime \mathrm{a}}\right)$, 137.2 ($\mathrm{C}-1^{\prime}$), 128.2, 128.2, 127.9 and $126.7(4 \times \mathrm{Ar}-\mathrm{C}), 124.1\left(\mathrm{C}-4^{\mathrm{b}}\right)$, $122.6\left(\mathrm{C}-5^{\mathrm{b}}\right), 111.8(\mathrm{C}-6), 74.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 55.5\left(\mathrm{OCH}_{3}\right)$ and 45.0 $\left(\mathrm{CH}_{2} \mathrm{CHO}\right) ; ~ m / z(\mathrm{EI}) 256\left(\mathrm{M}^{+}, 46 \%\right), 238$ (7), 227 (16), 165 (12), 137 (17), 136 (11), 122 (5), 92 (31), 91 (100), 65 (40) and 51 (10).

1-(2-Benzyloxy-3-methoxyphenyl)-3-nitropropan-2-ol 27

The substituted acetaldehyde $26(1.596 \mathrm{~g}, 6.23 \mathrm{mmol})$ and nitromethane ($3.37 \mathrm{~cm}^{3}, 3.80 \mathrm{~g}, 62.3 \mathrm{mmol}$) were suspended in an aqueous 0.025 M sodium hydroxide solution ($25 \mathrm{~cm}^{3}$). Cetyltrimethylammonium bromide ($0.249 \mathrm{~g}, 0.684 \mathrm{mmol}$) was added, and the reaction mixture stirred vigorously overnight in a stoppered flask. The reaction mixture was then transferred to a continuous extraction apparatus, where it was extracted for 24 h with diethyl ether. Removal of the solvent in vacuo afforded a yellow oil which was purified by column chromatography (20% ethyl acetate-hexane) to afford the 3-nitropropan-2-ol 27 as a clear oil ($1.975 \mathrm{~g}, 100 \%$) (Found: M^{+}, 317.1260. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires $M, 317.1263$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3448(\mathrm{~s}, \mathrm{OH}), 2838$ (w , Ar-H), 1558 ($\mathrm{s}, \mathrm{ArC=C}$), 1478 and $1380\left(\mathrm{~s}, \mathrm{NO}_{2}\right), 1273$ and 1212 (s, C-O) and 754 (s, oop ArC-H); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $7.43-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}), 7.04$ ($1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 7.8 , $\mathrm{H}-5^{\prime}$), $6.89\left(1 \mathrm{H}, \mathrm{dd}, J 8.2\right.$ and $\left.1.6, \mathrm{H}-4^{\prime}\right), 6.74(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 1.6 , H-6'), 5.05 and 4.99 (each $1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{CH}_{2} \mathrm{Ph}$), 4.47-4.45 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 4.26-4.23 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 3), 3.19$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.6, \mathrm{OH})$ and $2.76(2 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{H}-1) ; \delta_{\mathrm{C}}(50.32$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 152.8\left(\mathrm{C}-2^{\prime \mathrm{a}}\right), 145.8\left(\mathrm{C}-3^{\prime 2}\right), 137.2\left(\mathrm{C}-1^{\prime}\right), 130.0$, 128.5, 128.3 and $128.2(4 \times \mathrm{Ar}-\mathrm{C}), 124.5$ (C-4), 122.8 (C-5), 111.7 (C-6), $79.9(\mathrm{C}-3), 75.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.1(\mathrm{C}-2), 55.7\left(\mathrm{OCH}_{3}\right)$ and 35.2 (C-1); m/z (EI) 317 ($\mathrm{M}^{+}, 14 \%$), 265 (9), 257 (19), 256 (46), 238 (11), 227 (25), 165 (14), 164 (8), 162 (7), 161 (9), 137 (23), 122 (5), 92 (30), 91 (100), 77 (8), 65 (28), 51 (6) and 39 (10).

() -2-Benzyloxy-1-methoxy-3-[3-nitroprop-2-enyl]benzene 28

The substituted nitropropan-2-ol $27(0.296 \mathrm{~g}, 0.93 \mathrm{mmol})$ was dissolved in dry dichloromethane ($10 \mathrm{~cm}^{3}$). Methanesulfonyl chloride ($0.087 \mathrm{~cm}^{3}, 0.128 \mathrm{~g}, 1.12 \mathrm{mmol}$) was added, followed by diisopropylethylamine ($0.195 \mathrm{~cm}^{3}, 0.144 \mathrm{~g}, 1.12 \mathrm{mmol}$). On addition of the base, HCl was evolved as white fumes, and the reaction mixture changed from a colourless solution to pale yellow. The reaction mixture was left to stir under an inert atmosphere of nitrogen for 18 h . The reaction was not complete by tlc analysis, but this reaction does not appear to go to completion. Water $\left(10 \mathrm{~cm}^{3}\right)$ was added and the mixture extracted with dichloromethane $\left(3 \times 15 \mathrm{~cm}^{3}\right)$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to yield an orange oil which was subjected to column chromatography (10$30 \%$ ethyl acetate-hexane) to afford the nitropropene $\mathbf{2 8}$ as a yellow oil $(0.154 \mathrm{~g}, 96 \%$ based on starting material converted, 57% conversion), as well as recovered starting material $(0.126 \mathrm{~g})$ (Found: M^{+}, 299.1163. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires M, 299.1157); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3032(\mathrm{w}, \mathrm{Ar}-\mathrm{H}), 1584$ and 1556 ($\left.\mathrm{s}, \mathrm{ArC=C}\right), 1522$ and 1354 (m, NO NO_{2}), 1081 (s, C-O) and 753 (s, oop ArC-H); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.41-7.34$ ($\left.5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\right), 7.29-$ 6.68 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-3^{\prime}$), 5.07 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.93 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $3.43\left(2 \mathrm{H}, \mathrm{dd}, J 6.9\right.$ and $\left.1.6, \mathrm{H}-1^{\prime}\right) ; \delta_{\mathrm{C}}(50.32$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 152.8\left(\mathrm{C}-2^{\mathrm{a}}\right), 145.5\left(\mathrm{C}-1^{\mathrm{a}}\right), 141.0\left(\mathrm{C}-3^{\prime}\right), 134.0$ (C-2'), 137.3 (C-3), 129.9, 128.4, 128.2 and 128.1 ($4 \times \mathrm{Ar}-\mathrm{C}$), $124.3\left(\mathrm{C}-4^{\mathrm{b}}\right)$, $121.7\left(\mathrm{C}-5^{\mathrm{b}}\right), 111.6\left(\mathrm{C}-6^{\mathrm{b}}\right), 74.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 55.7$ $\left(\mathrm{OCH}_{3}\right)$ and $29.0\left(\mathrm{C}-1^{\prime}\right) ; m / z(\mathrm{EI}) 299\left(\mathrm{M}^{+}, 8 \%\right), 265(10), 162$ (26), 161 (27), 119 (5), 92 (35), 91 (100), 77 (6), 65 (30) and 51 (7).

2-Benzyloxy-1-methoxy-3-(3-nitropropyl)benzene 19

The substituted nitropropene $28(0.818 \mathrm{~g}, 2.73 \mathrm{mmol})$ was dissolved in dry tetrahydrofuran ($40 \mathrm{~cm}^{3}$) and dry methanol $\left(10 \mathrm{~cm}^{3}\right)$. Sodium borohydride ($0.282 \mathrm{~g}, 74.5 \mathrm{mmol}$) was added portionwise. Effervescence occurred on addition of the hydride, and the reaction mixture changed from a pale yellow to a bright yellow solution. After 30 min , water $\left(15 \mathrm{~cm}^{3}\right)$ was added and the organic solvents removed in vacuo. Diethyl ether was added to the residue, which was neutralized to pH 7 with 3% aqueous HCl . The mixture was then extracted with diethyl ether $(2 \times 20$ $\left.\mathrm{cm}^{3}\right)$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. Column chromatography (10% ethyl acetatehexane) yielded the nitropropane 19 as a pale yellow oil (0.577 g , 70%) (Found: $\mathrm{M}^{+}, 301.1325 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires $M, 301.1314$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3032(\mathrm{w}, \mathrm{Ar}-\mathrm{H}), 1584$ and 1559 (m, ArC=C), 1557 and $1380\left(\mathrm{~m}, \mathrm{NO}_{2}\right), 1082$ (s, C-O) and 754 (s, oop ArC-H); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.43-7.30$ ($\left.5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\right), 7.05-$ $6.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 6.84(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 1.6, H-6), $6.72(1 \mathrm{H}$, dd, $J 7.5$ and $1.6, \mathrm{H}-4), 5.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.24(2 \mathrm{H}, \mathrm{t}, J 7.2$, $\left.\mathrm{H}-3^{\prime}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC} H_{3}\right), 2.61\left(2 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{H}-1^{\prime}\right)$ and $2.27-$ $2.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right) ; \delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 152.8\left(\mathrm{C}-2^{\mathrm{a}}\right), 145.8$ $\left(\mathrm{C}-1^{\mathrm{a}}\right)$, 137.7 (C-3), 133.7, 128.4, 128.1 and $128.0(4 \times \mathrm{Ar}-\mathrm{C})$, 124.1 (C-4 $\left.{ }^{\text {b }}\right), 121.8$ (C-5 $\left.5^{\text {b }}\right), 110.9\left(\mathrm{C}-6^{\mathrm{b}}\right), 74.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.7$ $\left(\mathrm{C}-3^{\prime}\right), 55.7\left(\mathrm{OCH}_{3}\right), 27.8\left(\mathrm{C}-2^{\prime}\right)$ and $26.9\left(\mathrm{C}-1^{\prime}\right) ; ~ m / z$ (EI) 301 $\left(\mathrm{M}^{+}, 1 \%\right), 267$ (2), 163 (21), 149 (10), 131 (2), 103 (3), 92 (11), 91 (100), 77 (3), 65 (9), 51 (2) and 39 (4).

2-Benzyloxy-3-[(EIZ)-4-(2-benzyloxy-3-methoxyphenyl)-2-nitrobut-1-enyl]-1,4-dimethoxybenzene 20

Substituted nitropropane $19(0.604 \mathrm{~g}, 2.00 \mathrm{mmol})$ and 2-benzyloxy-3,6-dimethoxybenzaldehyde $18(0.489 \mathrm{~g}, 1.80 \mathrm{mmol})$ were dissolved in glacial acetic acid $\left(3 \mathrm{~cm}^{3}\right)$ in a wide-necked round bottomed flask. Ammonium acetate $(0.040 \mathrm{~g}, 0.52$ $\mathrm{mmol})$ was added. The flask was covered with a watch glass, and placed in a bath containing alumina. The bath was then placed in a conventional microwave oven and heated at 20% power for 5 min . Tlc analysis showed the reaction to be complete. The solvent was removed in vacuo, and the brown oil
purified by chromatography on silica gel (hexane, 20\% ethyl acetate-hexane), yielding the product $\mathbf{2 0}(0.569 \mathrm{~g}, 57 \%$ based on aldehyde) as a bright yellow oil. This reaction gave different ratios of both geometric isomers on different occasions (it has not been determined which isomer is which) (Found M^{+}, $555.2246 . \mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{7}$ requires $M, 555.2257$); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3088 (m, Ar-H), 1585 and 1583 (s, ArC=C), 1480 and 1350 (s, NO_{2}), 1082 (C-O) and 798 (s, oop ArC-H); $\delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) (values for the other isomer are given in the second set of NMR spectral data) 7.44-7.22 ($10 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{Ar}-\mathrm{H}), 6.95-6.70\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right.$ and $\left.\mathrm{H}-6^{\prime \prime}\right), 6.83(1 \mathrm{H}$, d, $J 9.1, \mathrm{H}-6), 6.52(1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{H}-5), 6.27$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1^{\prime}$), 5.02 and 4.89 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.84, 3.77 and 3.65 (each 3 H , s, OCH_{3}) and $2.74\left(4 \mathrm{H}\right.$, br s, $\mathrm{H}-3^{\prime}$ and $\left.\mathrm{H}-4^{\prime}\right)$; $\delta_{\mathrm{C}}(50.32 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 152.7\left(\mathrm{C}-1^{\mathrm{a}}\right), 151.7\left(\mathrm{C}-4^{\mathrm{a}}\right), 151.0\left(\mathrm{C}-3^{\prime \mathrm{a}}\right), 146.8\left(\mathrm{C}-2^{\mathrm{a}}\right)$, $146.3\left(\mathrm{C}-2^{\text {² }}\right), 145.8\left(\mathrm{C}-3^{\mathrm{b}}\right), 137.7$ and $137.2(2 \times \mathrm{Ar}-\mathrm{C}), 134.1$ (C-1"b), 128.5, 128.3, 128.2, 128.2, 127.9 and 127.9 ($6 \times \operatorname{Ar}-\mathrm{C}$), 123.9 (C-5"c), 122.1 (C-4"c), 120.5 (C-1'), 117.9 (C-2'), 113.3 (C-5d), $110.8\left(\mathrm{C}-6^{\mathrm{d}}\right), 105.8\left(\mathrm{C}-6^{\prime \prime \mathrm{d}}\right), 75.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $56.4,55.6$ and $55.5\left(\right.$ each $\left.\mathrm{OCH}_{3}\right)$, $34.1\left(\mathrm{C}-3^{\prime}\right)$ and $28.5\left(\mathrm{C}-4^{\prime}\right)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.67$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1^{\prime}$), $7.42-7.27$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $6.90-6.82$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \mathrm{a}}$ and $\mathrm{H}-5^{\prime \prime}$), $6.70(1 \mathrm{H}$, dd, $J 8.2$ and $\left.1.6, \mathrm{H}-6^{\prime \prime}\right), 6.60\left(1 \mathrm{H}, \mathrm{dd}, J 7.6\right.$ and $\left.1.6, \mathrm{H}-4^{\prime \prime}\right), 6.49$ ($1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{H}-5^{\mathrm{a}}$), 4.85 ($2 \mathrm{H}, \mathrm{s}, \mathrm{C} \mathrm{CH}_{2} \mathrm{Ph}$), 4.81 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.80, 3.76 and 3.62 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$) and 2.76-2.75 $(4 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3^{\prime}$ and $\mathrm{H}-4^{\prime}$); $\delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 153.3\left(\mathrm{C}-1^{\mathrm{a}}\right), 152.5$ (C-4 ${ }^{\mathrm{a}}$), 151.0 (C-3 $\left.{ }^{\prime \prime \mathrm{a}}\right)$, 146.9 (C-3), $146.0\left(\mathrm{C}-2^{\mathrm{b}}\right), 145.8$ (C-2"b), 137.8 and $136.7(2 \times \mathrm{Ar}-\mathrm{C}), 134.8$ (C-1"), 128.5, 128.2, 128.2, 128.1 and $128.0(6 \times \mathrm{Ar}-\mathrm{C}), 127.6\left(\mathrm{C}-1^{\prime}\right), 123.7$ and 121.7 $(2 \times \mathrm{Ar}-\mathrm{C}), 116.9\left(\mathrm{C}-2^{\prime}\right), 113.9,110.4$ and $105.7(3 \times \mathrm{Ar}-\mathrm{C})$, 75.2 and 74.3 (each $\mathrm{CH}_{2} \mathrm{Ph}$), 56.4, 55.5 and $55.7\left(\right.$ each $\left.\mathrm{OCH}_{3}\right)$, 29.3 (C-3'c) and 26.8 (C-4'c); m / z (EI) 555 (${ }^{+}$, 67\%), 418 (34), 327 (24), 272 (14), 267 (29), 244 (10), 191 (22), 181 (15), 180 (18), 167 (7), 149 (14), 137 (10), 92 (20), 91 (10) and 65 (20).

1-(2-Benzyloxy-3,6-dimethoxyphenyl)-4-(2-benzyloxy-3-methoxyphenyl)butan-2-one 29

Compound 20 ($0.095 \mathrm{~g}, 0.17 \mathrm{mmol}$) was dissolved in methanol $\left(2 \mathrm{~cm}^{3}\right)$. A mixture of titanium trichloride $\left(0.68 \mathrm{~cm}^{3}\right.$ of an aqueous 15% solution, 0.762 mmol) and an aqueous ammonium acetate solution ($1.02 \mathrm{~cm}^{3}$ of a 4 M solution, 4.09 mmol) was added, causing the yellow solution to turn black and stop stirring. A further $10 \mathrm{~cm}^{3}$ of methanol was added to allow the reaction to stir again. After 6 h , the reaction was saturated with solid sodium hydrogen carbonate and water ($10 \mathrm{~cm}^{3}$) added, and the mixture extracted with chloroform $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The residue was purified by preparative layer chromatography (25% ethyl acetate-hexane) to afford 1,4-diarylbutan-2-one $29(0.026 \mathrm{~g}, 29 \%)$ as a bright yellow oil (Found M^{+}, 526.2370. $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{6}$ requires $\left.M, 526.2355\right)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3050 (w, Ar-H), 1700 (s, C=O), 1600 and 1592 (m, ArC=C), 1050 (s, C-O) and 780 (s, oop ArC-H); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right)$ 7.44-7.25 ($10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}$), 6.96-6.52 ($5 \mathrm{H}, \mathrm{m}$, Ar-H), 4.96 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.86,3.82$ and 3.63 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $3.62(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 2.83-2.75(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3)$ and $2.62-2.59(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4) ; \delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 208.1$ (C-2), 152.8 (C-2 $\left.{ }^{\prime \mathrm{a}}\right), 152.1$ (C-2 $\left.{ }^{\prime 2 \mathrm{a}}\right), 147.1\left(\mathrm{C}-3^{\prime \mathrm{a}}\right), 137.9\left(\mathrm{C}-6^{\prime \mathrm{a}}\right)$, 137.8 (C-3"19), 135.6 (C-1'), 128.6, 128.4, 128.3 ($\times 2$), 128.2, 128.1, 128.0, 127.8, 123.9 and $122.0(10 \times \mathrm{Ar}-\mathrm{C}), 118.9\left(\mathrm{C}-1^{\prime \prime}\right)$, 111.3, 110.4 and $105.4(3 \times \mathrm{Ar}-\mathrm{C}), 74.9$ and $74.6\left(\right.$ each $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$, 56.3, 55.8 and $55.7\left(\right.$ each $\left.\mathrm{OCH}_{3}\right), 42.6(\mathrm{C}-1), 38.6(\mathrm{C}-3)$ and 24.5 (C-4); m / z (EI) 526 ($\mathrm{M}^{+}, 9 \%$), 508 (3), 418 (14), 281 (14), 269 (11), 191 (11), 167 (22), 137 (11), 92 (12) and 91 (100).

2-[4-(2-Hydroxy-3-methoxyphenyl)-2-nitrobutyl]-3,6-dimethoxyphenol 30 and 1-(2-hydroxy-3,6-dimethoxyphenyl)-4-(2-hydroxy-3-methoxy)butan-2-one 7
Compound 20 ($0.245 \mathrm{~g}, 0.44 \mathrm{mmol}$) was dissolved in methanol
$\left(12 \mathrm{~cm}^{3}\right) .10 \%$ Palladium on carbon ($0.025 \mathrm{~g}, 10 \%$ by mass) was added to the solution. The reaction mixture was then placed in an autoclave under 1 atmosphere H_{2} for 20 h . The bright yellow solution containing a black suspension lost its yellow colour during this time. The suspension was filtered over Celite, and washed with ethyl acetate ($100 \mathrm{~cm}^{3}$). The solvent was removed in vacuo, and the pale brown oil subjected to column chromatography (20-30\% ethyl acetate-hexane) to afford a mixture of the nitrobiphenol 30 and ketone $7(0.067 \mathrm{~g}$, in a $4: 1$ ratio, $\sim 30 \%$ of the nitro compound $\mathbf{3 0}$ and 10% of the ketone 7 by NMR spectroscopy) as a yellow oil. Data for compound 30: (Found: M^{+}, 377.1489. $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{7}$ requires $M, 377.1469$); $v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 3500(\mathrm{~s}, \mathrm{OH}), 3080(\mathrm{~m}, \mathrm{Ar}-\mathrm{H}), 1580$ and 1579 (s, $\mathrm{ArC=C}$), 1490 and 1363 (s, NO_{2}), 1073 (C-O) and 760 (s, oop ArC-H); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 6.76-6.66$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-4^{\prime \prime}$, $\mathrm{H}-5^{\prime \prime}$ and $\mathrm{H}-6^{\prime \prime}$), 6.29 ($1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{H}-4$), 5.83 and 5.70 (each 1 H , br s, OH$), 4.87-4.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right), 3.84,3.80$ and 3.70 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.39-3.44 ($1 \mathrm{H}, \mathrm{m}$, one of $\mathrm{H}-3^{\prime}$), 3.21-3.16 ($1 \mathrm{H}, \mathrm{m}$, one of $\mathrm{H}-3^{\prime}$), 2.68-2.63 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{l}^{\prime}$), 2.38-2.33 (1 H , m , one of H-4') and 2.13-2.08 ($1 \mathrm{H}, \mathrm{m}$, one of $\mathrm{H}-4^{\prime}$); δ_{C} (50.32 $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $152.6\left(\mathrm{C}-1^{\mathrm{a}}\right), 146.3$ (C-2"a), 144.8 (C-6a), 143.5 $\left(\mathrm{C}-3^{\mathrm{a}}\right), 140.9\left(\mathrm{C}-3^{\prime 2 \mathrm{a}}\right), 126.0\left(\mathrm{C}-2^{\mathrm{b}}\right), 122.2$ and $119.3(2 \times \mathrm{Ar}-\mathrm{C})$, $110.9\left(\mathrm{C}-1^{\prime \mathrm{b}}\right), 109.2,108.8$ and $100.7(3 \times \mathrm{Ar}-\mathrm{C}), 87.0\left(\mathrm{C}-2^{\prime}\right)$, 56.3, 55.9 and $55.6\left(\right.$ each $\left.\mathrm{OCH}_{3}\right), 32.8\left(\mathrm{C}-1^{\prime}\right), 28.2\left(\mathrm{C}-4^{\prime}\right)$ and 26.2 (C-3'); m / z (EI) 377 (${ }^{+}, 50 \%$), 346 (13), 328 (42), 209 (41), 193 (57), 191 (51), 178 (16), 177 (30), 167 (63), 166 (28), 161 (27), 151 (14), 137 (100) and 91 (11). For characterisation of ketone 7 see the next experiment.

1-(2-Hydroxy-3,6-dimethoxyphenyl)-4-(2-hydroxy-3-methoxy-phenyl)butan-2-one 7 and 4,7,8'-trimethoxy- 3 H -spiro[1-benzo-furan-2,2'-chromane)] 6

Compound 20 ($0.390 \mathrm{~g}, 0.700 \mathrm{mmol}$) was dissolved in 96% ethanol ($15 \mathrm{~cm}^{3}$). Cyclohexene ($0.085 \mathrm{~cm}^{3}, 0.069 \mathrm{~g}, 0.84 \mathrm{mmol}$), 20% palladium hydroxide on carbon (0.170 g of a 50% suspension in water, $120 \mathrm{mg} \mathrm{mmol}^{-1}$) and 1 drop concentrated HCl were added to the solution. The reaction mixture was then placed in an autoclave at 1 atmosphere H_{2} for 30 min . The bright yellow solution containing a black suspension loses its original yellow colour during this time. The suspension was filtered through Celite, and washed with ethyl acetate $\left(100 \mathrm{~cm}^{3}\right)$. The solvent was removed in vacuo, and the pale brown oil subjected to column chromatography ($20-50 \%$ ethyl acetatehexane) to afford firstly the ketone $7(0.044 \mathrm{~g}, 18 \%)$ as a brown oil (Found: $\mathrm{M}^{+}, 346.1421 . \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}$ requires $M, 346.1416$); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3508$ (s, OH), 3001 (w, Ar-H), 1707 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1603 and 1592 (m, ArC=C), 1068 (s, C-O) and 785 (s, oop ArCH); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 6.75-6.71$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-\mathrm{S}^{\prime \prime}$ and H-6"), $6.70\left(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-4^{\prime}\right), 6.32\left(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}^{\prime} 5^{\prime}\right)$, 6.01 and 5.88 (each $1 \mathrm{H}, \mathrm{br}$ s, OH), 3.84 and 3.82 (each $3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.74(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.91-2.87(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3$) and 2.82-2.77 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$); $\delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 209.3 (C-2), 152.3 (C-2 $\left.{ }^{\prime \text { a }}\right), 146.5$ (C-2 ${ }^{\text {"a }}$), 144.6 (C-3 $\left.{ }^{\prime \text { a }}\right), 143.5$ $\left(\mathrm{C}-6^{\prime 2}\right), 141.1\left(\mathrm{C}-3^{\prime 2 \mathrm{a}}\right), 127.2\left(\mathrm{C}-1^{\prime}\right), 122.2$ and $119.2(2 \times \mathrm{Ar}-\mathrm{C})$, $110.5\left(\mathrm{C}-1^{\prime \prime}\right), 109.1,108.6$ and $100.7(3 \times \mathrm{Ar}-\mathrm{C}), 56.2,55.8$ and 55.6 (each OCH_{3}), $41.6(\mathrm{C}-1), 37.8(\mathrm{C}-3)$ and $24.0(\mathrm{C}-2) ; m / z$ (EI) 346 ($\mathrm{M}^{+}, 4 \%$), 328 (100), 192 (21), 191 (94), 168 (19), 167 (20), 153 (10) and 137 (65).

This was followed by the spiroketal $6(0.147 \mathrm{~g}, 64 \%)$ as a cream-coloured foam (Found: $\mathrm{M}^{+}, 328.1303 . \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $M, 328.1311) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3006$ (w, Ar-H), 1600 and 1590 ($\mathrm{m}, \mathrm{ArC=C}$), 1099 and 1070 (m, C-O) and 788 (s, oop ArC-H); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ (where possible, values for the minor conformer have been given in parentheses) 6.74-6.60 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7$ ', H-5' and H-6'), 6.33 ($1 \mathrm{H}, \mathrm{d}, J 8.9$, H-5), 3.84-3.62 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 3.81, 3.80 and 3.74 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 2.86-2.68 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$) and 2.49-2.41 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}$); $\delta_{\mathrm{C}}(50.32$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 160.4$ (160.5) (C-7a), 152.4 (152.5) (C-8'a), 147.2 (146.4) (C-7), 145.3 (145.2) (C-4), 143.6 (143.6) (C-8'), 142.1
(141.4) (C-3a), 127.9 (127.5) (C-4'a), 122.2 (122.1) (Ar-C), 119.3 (119.2) (Ar-C), 111.5 (111.9) (C-8), 109.9 (109.4) (Ar-C), 108.9 (108.7) (Ar-C), 100.7 (100.8) (Ar-C), $56.4\left(\mathrm{OCH}_{3}\right), 55.9$ (55.9) $\left(\mathrm{OCH}_{3}\right), 55.6(55.7)\left(\mathrm{OCH}_{3}\right), 33.6(28.2)(\mathrm{C}-10), 26.2(27.9)$ (C-3') and 21.9 (25.8) (C-3); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}\right.$; toluene- $\mathrm{d}_{8} ; \mathrm{Me}_{4} \mathrm{Si}$, ambient temp.) 6.84-6.14 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}, \mathrm{H}^{\prime} 6^{\prime}$ and $\mathrm{H}-\mathrm{7}^{\prime}$), 6.45 $(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{H}-6), 6.10(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{H}-5), 4.05(3.83)(2 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-3), 3.45(3.51)\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.40(3.43)\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.34$ (3.32) $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.11-3.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 2.95-2.88(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-4^{\prime}$) and $2.61-2.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right)$) $\delta_{\mathrm{H}}(200 \mathrm{MHz}$; toluene$\left.\mathrm{d}_{8} ; \mathrm{Me}_{4} \mathrm{Si}\right)(300 \mathrm{~K}) 3.45(3.52)\left(\mathrm{OCH}_{3}\right), 3.40(3.43)\left(\mathrm{OCH}_{3}\right), 3.44$ (3.32) $\left(\mathrm{OCH}_{3}\right)$ (6 lines); (333 K) 3.45 (3.53), 3.43 (3.44), 3.38 (3.36) (6 lines); (343 K) $3.55,3.48,3.48,3.46,3.39$ (5 lines); (363 K) 3.55, 3.49, 3.47, 3.40 (4 lines); m / z (EI) 328 ($\mathrm{M}^{+}, 47 \%$), 326 (10), 206 (13), 192 (12), 191 (60), 178 (10), 177 (40), 176 (32), 167 (15), 166 (19), 138 (10), 137 (100), 123 (13), 122 (13), 77 (13), 65 (12), 51 (11) and 43 (14); δ_{C} (50.32 MHz ; toluene- d_{8}) 160.2 (160.1) (C-7a), 153.2 (153.4) (C-8'a), 147.8 (147.0) (C-7), 146.4 (146.1) (C-4), 144.5 (144.4) (C-8'), 142.7 (142.1) (C-3a), 137.5 (137.2) (C-4'a), 122.8 (Ar-C), 119.7 (119.5) (Ar-C), 112.6 (112.8) (C-8), 110.6 (109.9) (Ar-C), 109.4 (109.1) (Ar-C), 101.0 (100.1) ($\mathrm{Ar}-\mathrm{C}$), $56.4(56.3)\left(\mathrm{OCH}_{3}\right), 55.6(55.6)\left(\mathrm{OCH}_{3}\right), 55.4$ (55.6) $\left(\mathrm{OCH}_{3}\right), 34.2(28.8)\left(\mathrm{C}-4^{\prime}\right), 26.9(28.7)\left(\mathrm{C}-3^{\prime}\right)$ and 22.7 (26.4) (C-3).

Acknowledgements

This work was supported by the Foundation for Research Development (FRD) and the University of the Witwatersrand. We would like to thank Dr T. V. Stanbury for many helpful discussions. Mrs S. Heiss of this University and Dr P. R. Boshoff (Cape Technikon) are thanked for recording NMR spectra and mass spectra respectively. T. C. would like to thank the Institute of Catholic Education for additional financial support.

Notes and references

1 (a) H. Brockmann, W. Lenk, G. Schwantje and A. Zeeck, Chem. Ber. 1969, 102, 126; (b) H. Brockmann and A. Zeeck, Chem. Ber., 1970, 103, 1709.
2 (a) C. Coronelli, H. Pagani, M. R. Bardone and G. C. Lancini, J. Antibiot., 1974, 27, 161; (b) M. R. Bardone, E. Martinelli, L. F. Zerilli and C. Coronelli, Tetrahedron, 1974, 30, 2747.
3 (a) M. Chino, K. Nishikawa, M. Umekita, C. Hayashi, T. Yamazaki, T. Tsuchida, T. Sawa, M. Hamada and T. Takeuchi, J. Antibiot., 1996, 49, 752; (b) M. Chino, K. Nishikawa, T. Tsuchida, R. Sawa, H. Nakamura, K. T. Nakamura, Y. Muraoka, D. Ikeda, H. Naganawa, T. Sawa and T. Takeuchi, J. Antibiot., 1997, 50, 143.
4 (a) K. Eckardt, D. Tresselt and W. Ihn, J. Antibiot., 1978, 31, 970; (b) R. M. Stroshane, J. A. Chan, E. A. Rubalcaba, A. L. Garretson, A. A. Aszalos and P. P. Roller, J. Antibiot., 1979, 32, 197.

5 M. E. Goldman, G. S. Salituro, J. A. Bowen, J. M. Williamson, L. Zink, W. A. Schleif and E. A. Emini, Mol. Pharmacol., 1990, 38, 20.

6 A. Trani, C. Dallanoce, G. Panzone, F. Ripamonti, B. P. Goldstein and R. Ciabatti, J. Med. Chem., 1997, 40, 967.
7 For example: F. Parenti, B. P. Goldstein and L. Simioni, Use of purpuromycin in the treatment of vaginal infections and pharmaceutical compositions containing purpuromycin, Eur. Pat. Appl. EP 389924/1990, (Chem. Abstr., 1991, 114, 75192v).

8 (a) H. W. Moore, Science, 1977, 197, 527; (b) H. W. Moore and R. Czerniak, Med. Res. Rev., 1981, 1, 249.

9 For example: (a) Ref. 6; (b) A. Trani, C. Dallanoce, P. Ferrari, B. Goldstein, F. Ripamonti and R. Ciabatti, Farmaco, 1996, 51, 503.

10 C. B. de Koning, R. G. F. Giles and I. R. Green, J. Chem. Soc., Perkin Trans. 1, 1991, 2743.
11 C. B. de Koning, I. R. Green, J. P. Michael and J. R. Oliveira, Tetrahedron Lett., 1997, 38, 5055.
12 T. Capecchi, C. B. de Koning and J. P. Michael, Tetrahedron Lett., 1998, 39, 5429.
13 See for example: G. Solladié and C. Ziani-Chérif, J. Org. Chem., 1993, 58, 2181.
14 T. Capecchi, PhD thesis, University of the Witwatersrand, June 1999.

15 For examples see: (a) D. A. Evans, L. K. Truesdale and G. L. Carroll, J. Chem. Soc., Chem. Commun., 1973, 55; (b) S. Kobayashi, Y. Tsuchiya and T. Mukaiyama, Chem. Lett., 1991, 541.

16 I. Kubo, M. Kim, I. Ganjian, T. Kamikawa and Y. Yamagiwa, Tetrahedron, 1987, 43, 2653.
17 R. Ballini and G. Bosica, J. Org. Chem., 1997, 62, 425.
18 J. Knight and P. J. Parsons, J. Chem. Soc., Perkin Trans. 1, 1989, 979.

19 R. S. Varma and G. W. Kabalka, Synth. Commun., 1985, 15, 151.
20 R. S. Varma, R. Dahiya and S. Kumar, Tetrahedron Lett., 1997, 38, 5131.

21 Related reactions are described in the literature. R. P. K. Kodukulla, G. K. Trivedi, J. D. Vora and H. H. Mathur, Synth. Commun., 1994, 24, 819.
22 H. W. Pinnick, The Nef Reaction, in Organic Reactions, ed. L. A. Paquette, John Wiley \& Sons Inc., New York, 1990, vol. 38, ch. 3, pp. 655-792.
23 Aromatic spiroketals have been synthesised by other methods. For example, the griseusins: (a) T. Kometani, Y. Takeuchi and E. Yoshii, J. Org. Chem., 1983, 48, 2311; (b) M. A. Brimble and M. R. Nairn, J. Chem. Soc., Perkin Trans. 1, 1992, 579; (c) M. A. Brimble, M. R. Nairn and J. S. O. Park, J. Chem. Soc., Perkin Trans. 1, 2000, 697.

24 (a) G. Rosini, R. Ballini, M. Petrini and E. Marotta, Angew. Chem., Int. Ed. Engl., 1986, 25, 941; (b) G. Rosini, R. Ballini and E. Marotta, Tetrahedron, 1989, 45, 5935; (c) R. Ballini, M. Petrini and G. Rosini, Tetrahedron, 1990, 46, 7531; (d) R. Ballini and M. Petrini, J. Chem. Soc., Perkin Trans. 1, 1992, 3159.

25 For example: (a) Raney nickel and sodium hypophosphite: D. Monti, P. Gramatica, G. Speranza and P. Manitto, Tetrahedron Lett., 1983, 24, 417; (b) CrCl_{2} : R. S. Varma, M. Varma and G. W. Kabalka, Tetrahedron Lett., 1985, 26, 3777; (c) $\mathrm{CdCl}_{2}-\mathbf{M g}-$ $\mathrm{H}_{2} \mathrm{O}:$ M. Bordoloi, J. Chem. Soc., Chem. Commun., 1993, 922; (d) $\mathrm{SnCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}-\mathrm{Mg}-\mathrm{H}_{2} \mathrm{O}$: N. B. Das, C. Sarangi, B. Nanda, A. Nayak and R. P. Sharma, J. Chem. Res. (S), 1996, 28.
26 J. E. McMurry and J. Melton, J. Org. Chem., 1973, 38, 4367.
27 J. D. Prugh, C. S. Rooney, A. A. Deana and H. G. Ramjit, Tetrahedron Lett., 1985, 26, 2947. The conditions described in this paper were used.
28 R. S. Varma, M. Varma and G. W. Kabalka, Synth. Commun., 1986, 16, 91.
29 Unpublished results, K. Vandayar, University of the Witwatersrand, 1999.
30 (a) P. Deslongchamps, Stereoelectronic Effects in Organic Chemistry, Pergamon Press, Canada, 1983; (b) A. J. Kirby, Reactivity and Structure Concepts in Organic Chemistry, Vol. 15, The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, SpringerVerlag, Berlin, 1983.
31 HyperChem, Version 5; Hypercube Ltd., 1115 NW 4 ${ }^{\text {th }}$ Street, Gainesville, Florida 32601. Mr R. W. M. Krause and Professor H. M. Marques are thanked for help with the preliminary molecular modelling study.
32 A. G. Schultz and W. G. McMahon, J. Org. Chem., 1984, 49, 1676.

